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Minimax type of problems arise in several domains such as machine learning, optimization,

statistics, communication, and game theory. However, a majority of results are established

for the Euclidean norm due to its special self-dual nature.

Motivation of analysis in Non-Euclidean Space

(1) The quadratic proximity term ﬁ lIx — xk||§ is inappropriate for problems with highly
inhomogeneous geometry

(2) For example, the quadratic minimization problem
minern £(x) = 2 (x — x0) " Q (x — x0) where Q > 0 is a diagonal matrix with high
condition number. The inhomogeneous geometry leads to slow updates (since
iteration complexity depends on condition number for the quadratic minimization
problem) in the conventional GD algorithm.

(3) For the probability simplex problem, Euclidean distance is in general not
recommended for measuring the distance between probability vectors

(4) To tackle these issues, the mirror gradient descent algorithm was introduced which
adjusts the gradient updates to fit the problem geometry. The notion of mirror GD is
to replace the quadratic proximity term ﬁ lIx — xk||3 by a class of general
distance-like metric known as the Bregman divergence
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Prior work

(1) Work on Smooth Minimax Optimisation:* O(1/k?) convergence rate for smooth,
strongly-convex — concave problems, improving upon the previous best known rate of
O(1/k)

(2) Work on Non-Euclidean analysis:

(1) General Norm? They analyse Nesterov's accelerated gradient descent using
general norm for the unconstrained case. They develop a potential function
based framework for proving convergence rate.

(2) Relative strong convexity and smoothness:®* They develop a notion of “relative
smoothness” and relative strong convexity that is determined relative to a
user-specified “reference function” h(.). However, extension of this notion to
accelerated gradient descent is still an open problem.

(3) Riemannian space:* Proposed a Riemannian counterpart to Nesterov's AGD.

1Kiran K Thekumparampil et al. “Efficient algorithms for smooth minimax optimization”. In: Advances in
Neural Information Processing Systems. 2019, pp. 12680-12691.

2Nikhil Bansal and Anupam Gupta. “Potential-function proofs for first-order methods”. In: arXiv preprint
arXiv:1712.04581 (2017).

3Haihao Lu, Robert M Freund, and Yurii Nesterov. “Relatively smooth convex optimization by first-order
methods, and applications”. In: SIAM Journal on Optimization 28.1 (2018), pp. 333-354.

4Kwangjun Ahn and Suvrit Sra. “From Nesterov’s Estimate Sequence to Riemannian Acceleration”. In:
arXiv preprint arXiv:2001.08876 (2020).
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Problem Formulation

R XA XY —->R
min ryneaxg(x y) g y

Assumptions

(A1) X,Y CV where V is a normed vector space with an arbitrary norm ||.|| on the
underlying space

(A2) g(x,.) is concave for every x and o-strongly convex for every g(.,y) for every y.

(A3) Y is a compact set , there exists a finite Dy = max, ey |ly — y'|| also known as the
diameter of ).

(A4) g: X xY — Ris L-smooth
max { || Vxg(x,y) = Vag(x,¥)||, . || Vye(xy) = Vyg (<Y )|,} < L(Ix =X+ |ly =¥|))

Our goal To find a e-primal-dual pair (X,¥) defined as: (%,§) is an e-primal-dual pair of g
if the primal-dual gap is less than e: maxycy g(X,y) — minxex g(x,9) < €
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Contributions

(1) Using potential function based framework® and Bregman divergence framework,
proved O(1/k?) convergence rate for Nesterov's AGD for the general norm and
constrained case.

(2) Proposed Generalized Conceptual Dual Implicit Accelerated Gradient Descent
(GC-DIAG) which is adapted from the Conceptual Dual Implicit Accelerated Gradient
(C-DIAG)® and proved O(1/k?) convergence rate for the primal dual gap.

(3) Proved O(7%) convergence rate using Nesterov's AGD and restarting strategy which is
an improvement over O(3) for smooth and strongly convex functions with respect to
an arbitrary norm.

Smooth and convex | Smooth and strongly convex
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)° O(zs)
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Table: Comparison of oracle complexities with arbitrary norm

5Bansal and Gupta, “Potential-function proofs for first-order methods".
®Thekumparampil et al., “Efficient algorithms for smooth minimax optimization”.
7Yhli. Minimizing a Strongly Convex Function by Mirror Descent. 2017. URL:
http://yenhuanli.github.io/blog/2017/05/05/mirror-descent-str/.
8Y. Nesterov. “A method for solving the convex programming problem with convergence rate O(l/kz)”.
N. Deshpande, S. Routray Smooth Minimax Optimisation EE698U Term Presentation 5/24



http://yenhuanli.github.io/blog/2017/05/05/mirror-descent-str/

Nesterov's accelerated gradient ascent with general norm

Algorithm 1 Nesterov's accelerated gradient ascent with general norm
Input: Smooth concave function h(.), learning rate % Bregman divergence Dy (.]|.),

initial point yo and zo
Output: yx
1: for k=0,1,...,K do

W <—(1—7‘k)yk+7'kzk (1)
. I5]
Yirt = arg min {— (Th(wi)y —wi) + 2y - wwz} @)
yey 2
Zeen  argmin {1k (Vh(wi),2) + Dy(z]z¢)} 3)
zey

2: end for

For Euclidean norm (2) becomes yiy1 < Py(wk + %Vh(wk)) and (3) becomes

zk1 < Py (zi + eV h(wy))
A major hurdle in general norm case: We cannot use properties of Projection operator like

Non-expansiveness
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Analysis using Potential function

®(k) =k (k+1) (h(y™) — h(y«)) + %Dw(y*\lu)

Our goal:
O(k+1) < d(k)

Suppose h(.) is an L-smooth function and the parameters of Algorithm 1 are chosen so

(k+1)

that 8 > L, nx = E

_ 2
ey and 7 = e Then, we have

o(k +1) < (k)
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Analysis using Potential function

O(k+1) = &(k) = (k + 1)(k +2) (h(wk) = h(yx+1))
()

—k(k 4+ 1)(h(wk) — h(yx)) + 2(k + 1)(h(y) — h(w«)) +% (Dy (yllzx+1) — Dy (yllzx))
(b) ©

(4)
For bounding (a) and (b), we used:
(1) The fact that (—h(x)) is L-smooth and the choice of 3 > L.

(2) Concavity of h(x) and the choice of 74 = 2.
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Analysis using Potential function

Dy (yllzk+1) — Dy (yllz«)

= (U(y) — Y(zar1) — (V(zs1),y — zer1)) — (U(y) — ¥(z) — (V(zk),y — 2k))

= Y(zk) — P(zks1) + (V(2k), Zks1 — zi) + (V(zk11) — VP(2k), Zkr1 — )

<~ s — 2l + (V(ain) — V(e zen —) (5)
(d)

Inequality is due to p-strongly convex function (.)
From the update in (3) in Algorithm 1, we write the optimality condition as

(=T h(we) + VaDy(alz))|,_,, .y —2e1) 20, vy e V. (6)

From definition of Bregman divergence, VZDw(ZHZ")L:zk“
Hence, the term (d) in Equation (5) can be bounded as

= V(zis1) — Vo(zk).

(V(zir1) = VY(2k), Zks1 — ¥) < (kVhA(Wk), Z1 — y) - (7)

Hence,

Dy(yllzir1) = Dy (yllze) < —%" 2kt = zill* + (mV h(wi), 21 =) - (8)
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Analysis using Potential function

®(k +1) = &(k) = (k+ 1)(k +2)(h(wk) — h(yxs1))

= k(e + 1) () = Alyi) + 20k + () = hwe)) + = (Duylzksn) = Duy20)

h(yk+1) — h(wi) > 7w (Vh(We), Zkgr — zi) — ngz llzks1 — 2« (9)
— k(k +1)(h(wk) = h(y«)) + 2(k +1)(h(y) — h(wi))<2(k + 1) (Vh(wk),y — zx) , (10)

Dy (yllz+1) = Dy(yllze) < —%w 2 = zel® + eV h(wi), zien —y) . (11)

Ok +1) — o(k) < (k + 1)(k +2) (—n (Vh(wi), zeer — 2) + 272 2een zk||2)

2
4
+2(k+1) (Vh(wi),y — z) + uﬁ (—%} 261 — 2l + (e V h(wi), Zks1 — Y>)
P
k+1 4 @)
<28 s~ 2ul? (g — 1) + 206+ D+ 2) (Thwi) 2 -9 20, (12)

inequality (7) follows from the choice of nx = (k;;;)u,ﬂ.
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Generalized Conceptual Dual Implicit Accelerated Gradient Descent

(GC-DIAG)

Algorithm 2 Generalized Conceptual Dual Implicit Accelerated Gradient Descent (GC-DIAG)
for strongly-convex-concave programming

Input: g, Dy, py, L, 0, X0, yo, K,
Output: Xk yx
: Set/3>L, Zo < Yo
: for k=0,1,...,K do
Tk < k%z, Nk <— %mr,, W $— (1 — Tk)yk —+ Tkzk
Choose xk+1, Yk+1, ensuring:

el S R

g(Xk+1,Yha1) = min g(x, ye+1),

. 3
Yk+1 <— argmin {— (Vyg(Xk+1, Wk),y — Wk) + s lly — Wk||2}
yey 2

i1 <= argmin ey, {1k (Vyg(Xkr1, Wi), 2) + Dy (z]|24)},
2 K+1 :

k1) (kr2) 2ui=1 1Xi
: end for

5
6: Xk+1 < 0
7
8: return Xk, yk
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Convergence analysis of GC-DIAG

(k+ 1) (k +2) (01, y) — g(xksn, yien)) + %Dw(YHZkH)

Dpia

2 () (k+ 1) (g0urn,y) — glxksnye)) + gow(yuzo

D (k) (k+ 1) (811, ) — 8k, ) + (k) (k + 1) (8, y) — &lxics1, i) + %Dw(yllu)

2 () (k + 1) (g 001.y) — 8k )) + () (k + 1) (gx6,y) = (x6. ) + %Dw(yllu)

by

2 (k) (K + 1) glxieny) — S0 (& (xny)) + %Dw(ynzox (13)

i=1

Equality (2) follows by adding and subtracting k(k + 1)g(x,y). Inequality (3) follows
from the update rule g(xx,yx) = ming g(x, yx) in Step 4 of Algorithm 2 and hence
g(xk, k) < g(Xk+1,Yyk). Inequality (4) follows from the recurrence relation established in
inequality (3).
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Convergence analysis of GC-DIAG

Now, we write

(k+1)(k+2)(g(xkr1,Y) — 8(Xkt1, Yir1)) + %Dw(YHZkH) (14)

< (K) (k + 1) gbckiny) = S0 (E00y)) + %Dw(YHZO)- (15)

i=1
Rearranging the terms, we get

ket 48 43
> (20 (g(xi,y)) = (k+ 1)(k +2)g (xics1, yir1) < ——Dy(yllz0) = ——Dy(yllze+1) (16)
P fp fp
k+1

Z(2i)(g(xi7}’)) — (k+1)(k +2)g(x, yii1) (2 ng(YHZO) (17)

&(Xk+1,Y)) — &(X, yk+1) (2 Wﬂ)(kme(YHZO) (18)
_ . (7) 453

fy\"ea;g(xkﬂd)) - m'n g(x> Yir1) < me(YHZO) (19)

where inequality (5) follows from the fact that g(x, yx+1) > g(xk+1,yk+1)Vx e X.
Inequality (6) follows by defining a convex combination of X441 = W Zk+1(2l)
and from the fact that g(.,y) is convex for every y.
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Generalized Dual Implicit Accelerated Gradient Descent (G-DIAG)

Algorithm 3 Generalized Dual Implicit Accelerated Gradient Descent (G-DIAG) for strongly-
convex-concave programming

K
Input: g, Dy, 1y, L, o, X0, Yo, K, {égp}
Output: Xk yx !
Set 5 <7, zo < Yo
for k=0,1,...,K do
Ti <7, Nk <7, wi < (1 — 7%) yk + Thzk
Xki1, Yar1 < Imp — STEP(g, L, 0, X0, Wi, B, €a)), ensuring:

Rl

8(xk+1,Yht1) < ming(x, yut1) + elidd)

Yicr1 <= argmin ¢ — (Vyg(xir1, W),y — W) + 5 lly — wil|?
yEY 2

5 Zkt+1 < arg minzey { 77k (Vyg(Xkt1,Wk), z) + Dy (z||z«) },

6: X1 < (k+1)(k+2 Z, 1 X

7: end for

8: return Xk, yk
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Imp Step subroutine in G-DIAG

Algorithm 4 Imp Step subroutine in G-DIAG

1: Imp — STEP(g, L, 0,0, W, 3, e\fa)):
2: Set €mp 7?7, R 7, €agd 7, Yo < W
3: for r=0,1,...,R do
4: Starting at xo use generalized AGD (Algorithm 1 with —g(.,y,) to compute
X, such that:
g(%ryr) < mxin g(X,yr) + €aga; (20)
. . 5 2
5: Vi1 < argmingey, {— (Vyg(Re,w),y —w) + 5 [ly — w[*}
6: end for
7: return Xg, Yri1

In the Imp — Step of the original DIAG algorithm,® AGD (with ¢? norm) is used to
efficiently calculate (in logarithmic number of steps) an estimate for

X, = arg min, » g(X,yr) + €agda- The proof uses the guarantee on AGD for strongly convex
case.

9Thekumparampil et al., “Efficient algorithms for smooth minimax optimization”.
1°Bansal and Gupta, “Potential-function proofs for first-order methods”, Equation (5.68).
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Challenges faced in arbitrary norm case

We faced the the following issues

(A) Analyzing AGD for strongly convex case in arbitrary norm

(1) In our setting, strong convexity is defined with respect to some arbitrary norm. We
have not found any literature that tackles this problem using AGD.

(2) It may happen that, for arbitrary norm, finding an €.gq estimate x, would not be
possible in linear time.

(3) As an example, we found a blog'! that discusses the case of mirror descent for the
strongly convex case with respect to a general norm.

(4) They note that the improved oracle complexity (due to strong convexity) is O(1/k)
only. So, it may not be possible to achieve the linear convergence in an arbitrary norm
case.

(B) Proving that the Imp — Step convergence: Let x*(y) = arg min ., g(x,y), then for

proving that there exists a fixed point of the iterations of the Imp — Step, we require to

show y* = argmin,cy, {— (Vyg(x*(y),w),y —w) + £ |ly — w||*} is a contraction, that is

Iyi —vsll <alyr—yal, a <1

11Yhli, Minimizing a Strongly Convex Function by Mirror Descent.
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Convergence analysis for generalized AGD with strong concavity

(1) In case of mirror descent, the restarting strategy discussed in'? improves the
convergence rate from O(1/vk) to O(1/k) through introduction of strong convexity
(or concavity in our case).

(2) We try to come up with the convergence rate for generalized AGD with strong
concavity following a similar procedure.

(3) Using Lemma 7, the oracle complexity for generalized AGD can be found by carrying
out a telescoping sum.

Suppose h(.) is a L-smooth function and the parameters of Algorithm 1 are chosen as per
Lemma 7, then the following holds

hly) = hlyr) < 22 - L) (21)

If we also assume Q = maxycy Dy (y||yo), then the following bound would hold

X 48 Q
h(y™) = h(yr) < v TOTED) (22)

12Yhli, Minimizing a Strongly Convex Function by Mirror Descent.
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Convergence analysis for generalized AGD with strong concavity

Now, assume that h(.) is also o-strongly concave with respect to some norm ||.||. Further,
1(.) is chosen such that it is ju,-strongly convex on the whole R?, instead of only on ).
For any R > 0 and u, define ¢r u(y) := 9(R™*(y — u)). Let Dy r.(.||.) denote the
corresponding Bregman divergence.

Corollary

Suppose
Q = max { Dy([O)| IV < 1,y € R}, Ro=y” ~ ol

If we apply Algorithm 1 with n, = gﬁlﬁ), T = %, learning rate % for some 8 > L and

Bregman divergence Dy ryo(.||.) for T iterations. Then, the following bounds hold

") = hlyr(Ro.yo)) < 2207 s (23)
ly* —yr(Ro,yo)? < 28 _ 22 (24)

pop T(T +1)

where y* is the unique maximizer of h(.) on ).
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Convergence analysis for generalized AGD with strong concavity

Proof.

Consider the norm ||.[|5 := Ry ||.||l. Note that h(.) is RoL-smooth and v u(.) is
pyp-strongly convex with respect to |||z, . In this case, Q would become

Dy rosvo(¥”Il¥0) = Du(Ro*(y” = y0)110) = max { Dy (vI[0)] V]| < 1,v € R’} == @

The bound in (23) follows directly from Theorem 17. The bound in Equation (24) is
obtained from (23) using strong-concavity of h(.) and the optimality of y*.

h(y") = h(yr) > (VAY)y" —yr) + 5 ly" —yrl®, (VA"),y" —yr) >0

19 /24
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Convergence analysis for generalized AGD with strong concavity

The error bounds given by Equations (23) (24) depend on Ry with smaller Ry giving
smaller error bounds. Also, the bound of the distance between y* and yr (24) is strictly

decreasing with iterations T. These observations can be used to design the following
restarting strategy.

Restarting strategy

(1) Setyoe Y, I=0
(2) Set T such that ||y* —yr,(Ri,y)|* <27'R?.

(3) Compute yi11 = y7,(Ri,y1) using generalized AGD as per Corollary 18.
4) Set RA; =2"'R? | =1/+1. Go to step 2.
I+1 i

By Corollary 18, it suffices to choose T; such that

8RB __Q B8RS Q _,ap
pop T(Ti+1) = ppp T;

| 1689
Ripuype

(25)

The total number of AGD iterations required to get y; is defined as M, = Z,L:_()l T;.
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Convergence analysis for generalized AGD with strong concavity

Proposition
Let L* be the largest L such that

L> 882 L+1)/4
Ropuy

Then, the proposed restarting strategy guarantees the following bound

h(y*) — h(y) < 27C5MAD  R2 - for [ < L (26)
ly” = yel* < 27" RE, for L< L (27)
and
h(y™) — h(y.) < 10246°0° for L>L" (28)
— h(y) < 2P
1, M
- > _ 20483°Q7 .
y — <—F5—Fg, forlL>1L 29
Iy il < 2 g (29)
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Convergence analysis for generalized AGD with strong concavity

Proof
Using the proposed restarting strategy, it follows from Corollary 18 that

h(y™) — h(y.) <27 “"DuRg (30)
ly* = yil* <27°R3 (31)

By the choice of T; given in Equation (25), it holds that

L—
1682 | 1652 1/ 8692 Sty
M, <L+ <L+
Z Ripwi z; Ropuy Rouwu

Therefore, depending on value of L, the following holds

M. <2L, for L<L* (32)

M, < 3260 2D/ for L L* (33)
Ro gt

The bounds given in Equations (26)-(29) follow by eliminating L from Equations (30), (31)
using the relations in Equations (32), (33). O
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Conclusion and future work

(1) We extended the framework of Conceptual Dual Implicit Accelerated Gradient
Descent to arbitrary norm case and proved O(1/k?) convergence rate using Bregman
divergence framework

(2) A key intermediate step involved proving convergence guarantee for Nesterov's AGD
for a strongly convex and smooth function with respect to an arbitrary norm. We
improved the convergence to O(k%) using the restarting strategy

(3) We plan to use the notion of relative smoothness and strong convexity to prove the
contraction bound required for the inexact version of Dual Implicit Accelerated
Gradient Descent.
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Thank You
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