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ABSTRACT

Minimax type of problems arise in several domains such as machine learning, optimization, statistics,
communication, and game theory. However, a majority of results are established for the Euclidean
norm due to its special self-dual nature. In this project, we propose Generalized Conceptual Dual
Implicit Accelerated Gradient Descent (GC-DIAG) which is adapted from the Conceptual Dual
Implicit Accelerated Gradient (C-DIAG) [9] for solving smooth minimax optimization problems
minx maxy g(x,y) where g(., .) is smooth and g(x, .) is concave for each x . We prove O(1/k2)
convergence rate for the primal dual gap using a potential-function based proof [2] and Bregman
Divergence framework. We also prove O( 1

k4 ) convergence rate using Nesterov’s accelerated gradient
descen�and a restarting strategy, similar to [10], which is an improvement over O( 1

k ) for smooth and
strongly convex functions with respect to an arbitrary norm.

1 Motivation

The motivation for the non-Euclidean extension comes from the lecture notes on mirror descent in [4] which mentions
that the quadratic proximity term 1

2ηk
‖x− xk‖22 is inappropriate for problems with highly inhomogeneous geometry.

For example, the quadratic minimization problem minx∈Rn f(x) = 1
2 (x− x0)

T
Q (x− x0) where Q � 0 is a diago-

nal matrix with high condition number. It is also possible to have non-euclidean geometry, for instance, minimization
with constraint set as the probability simplex. The inhomogeneous geometry leads to slow updates (since iteration
complexity depends on condition number for the quadratic minimization problem) in the conventional GD algorithm.
For the probability simplex problem, Euclidean distance is in general not recommended for measuring the distance
between probability vectors. To tackle these issues, the mirror gradient descent algorithm was introduced which adjusts
the gradient updates to fit the problem geometry. The notion of mirror GD is to replace the quadratic proximity term

1
2ηk
‖x− xk‖22 by a class of general distance-like metric known as the Bregman divergence [4].

2 Prior work

Thekumparampil et al [9] proposed a new algorithm combining Nesterov’s AGD and Mirror-Prox and proved a
convergence rate Õ(1/k2) for smooth, strongly-convex – concave problems, improving upon the previous best known
rate of O(1/k). However, their analysis is limited to the Euclidean norm. For extending an algorithm to the Non-
Euclidean space, there have been two popular approaches. First, algorithms can be analyzed in vector spaces defined
with respect to an arbitrary norm. Bansal et al [2] analyzed Nesterov’s accelerated gradient descent using general
norm for the unconstrained case. They develop a potential function based framework for proving convergence rate. A
second and more recent approach is the notion of relative strong convexity and smoothness [5]. Haihao Lu et al in [5]
develop a notion of “relative smoothness” and relative strong convexity that is determined relative to a user-specified
“reference function” h(.). However, extension of this notion to accelerated gradient descent is still an open problem.
Since, analysis of extension to Non-Euclidean space is tough, some works analyze algorithms in a special class of
Non-Euclidean spaces called as the Riemannian space. Kwangjun Ahn in [1] proposed a Riemannian counterpart to
Nesterov’s AGD.



3 Contributions

(1) We develop a potential function based proof of O(1/k2) convergence rate for Nesterov’s AGD for the general
norm and constrained case using Bregman divergence framework.

(2) We propose Generalized Conceptual Dual Implicit Accelerated Gradient Descent (GC-DIAG) which is adapted
from the Conceptual Dual Implicit Accelerated Gradient (C-DIAG) [9] and proved O(1/k2) convergence
rate for the primal dual gap. Our attempt to develop an implementable inexact version of GC-DIAG was
unsuccessful.

(3) We propose a restarting strategy using Nesterov’s AGD for smooth and strongly convex case w.r.t arbitrary
norm and show that the convergence rate can be improved from O( 1

k2 ) to O( 1
k4 ). These results along with

similar results for mirror descent are summarized in Table 1.

Smooth and convex Smooth and strongly convex

Mirror descent O( 1√
k

) O( 1
k ) [10]

Nesterov’s AGD O( 1
k2 ) [7, 2] O( 1

k4 )

Table 1: Comparison of oracle complexities with arbitrary norm

4 Problem Formulation

We consider smooth minimax problems of the form

min
x∈X

max
y∈Y

g(x,y) , g : X × Y → R (1)

under the following assumptions

(A1) g : X × Y → R is L-smooth i.e. , gradient Lipschitz (see Definition 1).

(A2) g(x, .) is concave for every x and σ-strongly convex for every g(.,y) for every y.

(A3) Y is a compact set i.e. , there exists a finite DY = maxy,y′∈Y ‖y − y′‖ also known as the diameter of Y .

(A4) There exists a finite Ω = maxy∈Y Dψ(y||y0).

Note that X ,Y ⊆ V where V is a normed vector space with an arbitrary norm ‖.‖ on the underlying space. We have
marked in red the parts where our work differs from the original paper [9].

5 Preliminaries

Definition 1. A function g(x,y) is said to be L-smooth if:

max
{
‖∇xg(x,y)−∇xg(x′,y′)‖∗ , ‖∇yg(x,y)−∇yg(x′,y′)‖∗

}
≤ L (‖x− x′‖+ ‖y − y′‖)

5.1 Bregman divergences

Definition 2. Given a continuously differentiable and µψ-strongly convex function ψ : X → R, the Bregman divergence
is defined as

Dψ(y‖x) := ψ(y)− ψ(x)− 〈∇ψ(x),y − x〉 (2)

The strong convexity of ψ implies

Dψ(y‖x) ≥ µψ
2
‖y − x‖2 (3)
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5.2 Convex-concave setting

The convex concave minimax Problem 1 induces the following primal and dual problems

P ∗ = min
x∈X

f(x), f(x) := max
y∈Y

g(x,y) (P ) (4)

D∗ = max
yinY

h(y), h(y) := min
x∈X

g(x,y) (D) (5)

Under Assumption (A2), ∀(x̂, ŷ), the following holds trivially:

min
x∈X

g(x, ŷ) ≤ g(x̂, ŷ) ≤ max
y∈Y

g(x̂,y)

which then implies maxy∈Y minx∈X g(x,y) ≤ minx∈X maxy∈Y g(x,y). Further, under Assumption (A3),
Sion’s minimax theorem [8] states the above inequality is in fact a equality i.e. , maxy∈Y minx∈X g(x,y) =
minx∈X maxy∈Y g(x,y). Thus, any point (x∗,y∗) is an optimal solution to Problem 1 if and only if

D∗ = h(y∗) = min
x∈X

g(x,y∗) = g(x∗,y∗) = max
y∈Y

g(x∗,y) = f(x∗) = P ∗ (6)

i.e. x∗ is an optimal solution to (P ) and y∗ is an optimal solution to (D).

We would like to find a ε-primal-dual pair (x̂, ŷ) defined as:
Definition 3. For a convex-concave g : X × Y → R, (x̂, ŷ) is an ε-primal-dual pair of g if the primal-dual gap is less
than ε: maxy∈Y g(x̂,y)−minx∈X g(x, ŷ) = f(x̂)− h(ŷ) ≤ ε

Note that the ε-primal-dual criteria for (x̂, ŷ) can also be written as

f(x̂)− P ∗ +D∗ − h(ŷ) ≤ ε
which implies that

f(x̂)− P ∗ ≤ ε (7)
D∗ − h(ŷ) ≤ ε (8)

i.e. x̂ is an ε-optimal minima of f and ŷ is an ε-optimal maxima of h.

5.3 Motivating the algorithm

Lemma 1 guarantees that the dual function h(y) is an L(1+ L
σ )-smooth concave function. So, we can use AGD to ensure

that the dual gap h(yk)−h(y∗) = O(1/k2). Each step of AGD updates for y requires gradients at g(xk+1,wk) which
is computed by xk+1 = arg minx∈X g(x,yk). In `2 norm space, xk+1 can be computed efficiently in logarithmic
number of steps because g(.,yk) is smooth and strongly-convex. So, the overall oracle complexity for dual problem is
h(yk)− h(y∗) = Õ(1/k2) in `2 norm space. It is clear that in arbitrary norm space, the oracle complexity would be
worse than Õ(1/k2) as AGD does not achieve linear convergence for strong convex case for general norm.

Further, the above bound on the dual gap need not hold for primal gap as well. [9, Section 3] provides an example
where the dual gap bound is Θ(1/k2) but the primal gap bound is Θ(1/k) only. Equations (7), (8) imply that it is
necessary to ensure the primal gap has same or better convergence rate than dual gap, so that the overall convergence
rate is dictated by the dual problem. DIAG achieves this by combining ideas from AGD and Nemirovski’s derivation of
the Mirror-Prox algorithm [6].
Lemma 1. For a σ-strongly-convex-concave L-smooth function g(., .), h(y) = minx∈X g(x,y) is an L(1+ L

σ )-smooth
concave function.

Proof. Let x∗(y) = arg minx∈X g(x,y). Since g(.,y) is strongly convex, x∗(y) is unique. Then by Danskin’s
theorem [3, Section 6.11], h is differentiable and∇h(y) = ∇yg(x∗(y),y). First, we show that x∗(y) is L

σ -Lipschitz
continuous as follows

σ ‖x∗(y2)− x∗(y2)‖2
(a)

≤ 〈∇xg(x∗(y2),y2)−∇xg(x∗(y1),y2),x∗(y2)− x∗(y1)〉
(b)

≤ 〈−∇xg(x∗(y1),y2),x∗(y2)− x∗(y1)〉
(c)

≤ 〈∇xg(x∗(y1),y1)−∇xg(x∗(y1),y2),x∗(y2)− x∗(y1)〉
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(d)

≤ ‖∇xg(x∗(y1),y1)−∇xg(x∗(y1),y2)‖∗ ‖x
∗(y2)− x∗(y1)‖

(e)

≤ L ‖y1 − y2‖ ‖x∗(y2)− x∗(y1)‖ (9)

where (a) follows from σ-strong convexity of g(., y), (b) and (c) follows from the first order optimality condition for
x∗(y): 〈∇xg(x∗(y),y),x− x∗(y)〉 ≥ 0 applied at y = y2 and y = y1 respectively, (d) follows from the Generalized
Cauchy-Schwarz inequality and (e) follows from L-smoothness of g (Definition 1).

Now, to show h is smooth, we proceed as follows:

‖∇h(y1)−∇h(y2)‖∗ = ‖∇yg(x∗(y1),y1)−∇yg(x∗(y2),y2)‖∗
(a)

≤ L ‖y1 − y2‖+ L ‖x∗(y1)− x∗(y2)‖
(b)

≤ L ‖y1 − y2‖+
L

σ
· L ‖y1 − y2‖ = L(1 +

L

σ
) ‖y1 − y2‖ (10)

Here, (a) follows from L-smoothness of g and (b) follows from L
σ -Lipschitz continuity of x∗(y) (Equation (9))

5.4 Mirror-Prox

Mirror-Prox [6] is one of the popular algorithms employed to solve convex-concave minimax problem. It achieves an
bound of O(1/k) on both primal and dual error. The conceptual Mirror-Prox (CMP) proposed in [6] brings out the
main idea behind its O(1/k) convergence and motivates the final algorithm. CMP does the following updates:

(xk+1,yk+1) = (xk,yk) +
1

β
(−∇xg(xk+1,yk+1),∇yg(xk+1,yk+1)) (11)

CMP differs from standard gradient descent ascent in the point at which gradients are computed,i.e. in the k-th step, CMP
uses gradient information at (xk+1,yk+1) for its updates. But updates given by Equation (11) is not implementable. In
[6], an inexact version of CMP is proposed which can be efficiently implemented for smooth function g(., .). It can be
summarised as follows:

Let
(
x

(0)
k ,y

(0)
k

)
= (xk,yk). For β < 1

L , the iteration(
x

(i+1)
k ,y

(i+1)
k

)
= (xk,yk) +

1

β

(
−∇xg

(
x

(i)
k ,y

(i)
k

)
,∇yg

(
x

(i)
k ,y

(i)
k

))
(12)

can be shown to be a 1√
2

-contraction with (xk+1,yk+1) as its fixed point. So, in log
(

1
ε

)
iterations of (12), we can

obtain an accurate version of the update required by CMP. The Imp− STEP of GC-DIAG (Algorithm 3) is motivated
from Mirror-prox. We attempt to prove its convergence similarly, by trying to show a contraction.

5.5 Nesterov’s accelerated gradient ascent with general norm

Nesterov’s accelerated gradient descent (or ascent) [7] is a popular method used to minimize smooth convex functions
(or maximize smooth concave functions) and has been shown to be an optimal method for this class of problems. The
pseudocode for the general norm case is presented in Algorithm 1.

Algorithm 1 Nesterov’s accelerated gradient ascent with general norm
Input: Smooth concave function h(.), learning rate 1

β , Bregman divergence Dψ(.‖.), initial point y0 and z0

Output: yK
1: for k = 0, 1, ...,K do

wk ← (1− τk)yk + τkzk (13)

yk+1 ← arg min
y∈Y

{
−〈∇h(wk),y −wk〉+

β

2
‖y −wk‖2

}
(14)

zk+1 ← arg min
z∈Y

{−ηk 〈∇h(wk), z〉+Dψ(z‖zk)} (15)

2: end for
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We would consider a potential function based proof of Algorithm 1. If y∗ is the optimal solution of the problem, the
potential function is defined as

Φ(k) = k (k + 1) (h(y∗)− h(yk)) +
4β

µψ
Dψ(y∗‖zk) (16)

The following lemma is the key result is obtaining the convergence rate of GENERALIZED DIAG (G-DIAG). It is
essentially a generalization of Lemma 4 in [9] to arbitrary norm space. We emphasize the key steps in the proof using
colours blue and green to improve the clarity of the proof.
Lemma 2. Suppose h(.) is an L-smooth function and the parameters of Algorithm 1 are chosen so that β > L,
ηk = (k+1)

2β µψ and τk = 2
k+2 . Then, we have

Φ(k + 1) ≤ Φ(k)

Proof. Using (16), the potential difference can be written as

Φ(k + 1)− Φ(k) = (k + 1)(k + 2) (h(wk)− h(yk+1))︸ ︷︷ ︸
(a)

−k(k + 1)(h(wk)− h(yk)) + 2(k + 1)(h(y)− h(wk))︸ ︷︷ ︸
(b)

+
4β

µψ
(Dψ(y‖zk+1)−Dψ(y‖zk))︸ ︷︷ ︸

(c)

(17)

The term (c) can be bounded as

Dψ(y‖zk+1)−Dψ(y‖zk) = (ψ(y)− ψ(zk+1)− 〈∇ψ(zk+1),y − zk+1〉)− (ψ(y)− ψ(zk)− 〈∇ψ(zk),y − zk〉)
= ψ(zk)− ψ(zk+1) + 〈∇ψ(zk), zk+1 − zk〉+ 〈∇ψ(zk+1)−∇ψ(zk), zk+1 − y〉

≤ −µψ
2
‖zk+1 − zk‖2 + 〈∇ψ(zk+1)−∇ψ(zk), zk+1 − y〉︸ ︷︷ ︸

(d)

(18)

where the last inequality is due to µψ-strongly convex function ψ(.). From the update in (15) in Algorithm 1, we write
the optimality condition as〈

(−ηk∇h(wk) +∇zDψ(z‖zk))
∣∣
z=zk+1

,y − zk+1

〉
≥ 0, ∀y ∈ Y. (19)

From definition of Bregman divergence, ∇zDψ(z‖zk)
∣∣
z=zk+1

= ∇ψ(zk+1) − ∇ψ(zk). Hence, the term (d) in
Equation (18) can be bounded as

〈∇ψ(zk+1)−∇ψ(zk), zk+1 − y〉 ≤ 〈ηk∇h(wk), zk+1 − y〉 . (20)

Hence,

Dψ(y‖zk+1)−Dψ(y‖zk) ≤ −µψ
2
‖zk+1 − zk‖2 + 〈ηk∇h(wk), zk+1 − y〉 . (21)

The terms (a) and (b) can be bounded similar to the proof in [9, Lemma 4]. We provide the proof for the bound on
terms (a) and (b) here for sake of completeness.

The term (a) can be bounded as

h(yk+1)− h(wk)
(1)

≥ 〈∇h(wk),yk+1 −wk〉 −
L

2
‖yk+1 −wk‖2

(2)

≥ 〈∇h(wk),yk+1 −wk〉 −
β

2
‖yk+1 −wk‖2

(22)

Here, inequality (1) follows from the fact that (−h(x)) is L-smooth, inequality (2) follows from the choice of β > L.
From the update in (14) in Algorithm 1, yk+1 = arg maxy∈Y

{
〈∇h(wk),y −wk〉 − β

2 ‖y −wk‖2
}

. We know that
yk ∈ Y and zk+1 ∈ Y . So, a convex combination v = (1− τk)yk + τkzk+1 ∈ Y . Hence, we can write

〈∇h(wk),yk+1 −wk〉 −
β

2
‖yk+1 −wk‖2 ≥ 〈∇h(wk),v −wk〉 −

β

2
‖v −wk‖2
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(3)
= τk 〈∇h(wk), zk+1 − zk〉 −

β

2
τ2
k ‖zk+1 − zk‖2 , (23)

where equality (3) follows from the update rule (13) in Algorithm 1.

The term (b) can be bounded as

− k(k + 1)(h(wk)− h(yk)) + 2(k + 1)(h(y)− h(wk))

(4)

≤ −k(k + 1) 〈∇h(wk),wk − yk〉+ 2(k + 1) 〈∇h(wk),y −wk〉
(5)
= 2(k + 1) 〈∇h(wk),y − zk〉 , (24)

where inequality (4) follows from the concavity of h(x) and equality (5) follows from the update rule (13) in Algorithm 1
and the choice of τk = 2

k+2 . We now substitute bounds (21), (72) and (73) in (17) to get

Φ(k + 1)− Φ(k) ≤ (k + 1)(k + 2)

(
−τk 〈∇h(wk), zk+1 − zk〉+

β

2
τ2
k ‖zk+1 − zk‖2

)
+ 2(k + 1) 〈∇h(wk),y − zk〉+

4β

µψ

(
−µψ

2
‖zk+1 − zk‖2 + 〈ηk∇h(wk), zk+1 − y〉

)
(6)

≤ 2β ‖zk+1 − zk‖2
(
k + 1

k + 2
− 1

)
+ (−2(k + 1) +

4β

µψ
ηk) 〈∇h(wk), zk+1 − y〉

(7)

≤ 0, (25)

where inequality (6) follows from the choice of τk and inequality (7) follows from the choice of ηk = (k+1)
2β µψ .

We also attempted along similar lines using the notion of relative smoothness. We were not able to complete the proof.
We highlight the steps which cause difficulty in the analysis in the Appendix.

5.6 Experiments

We demonstrate the significance of considering an appropriate norm which fits the problem geometry in the following
example.

AGD vs general AGD

We consider the following problem and solve it using Algorithm 1.

max
y
−1

2
yTQy := h(y), Q � 0,y ∈ Rn (26)

Here, y∗ = 0 and h(y∗) = 0. Consider two different scenarios:

Case1: We minimize Problem 26 in `2 norm space. With respect to this norm, h(.) is λmax(Q)-smooth. The AGD
case corresponds to setting ψ(y) = (1/2)yTy = (1/2) ‖y‖22 which has µψ = 1. The Bregman divergence
becomes Dψ(y||x) = (1/2) ‖y − x‖22. Therefore, we get the following update equations:

wk = (1− τk)yk + τkzk (27)

yk+1 = wk −
1

β
Qwk (28)

zk+1 = zk − ηkQwk (29)

The variation of optimality gap with iterations is plotted in Figure 1.

Case2: We minimize Problem 26 in Q-norm space, i.e. ‖y‖Q =
√

yTQy. With respect to this norm, h(.) is 1-
smooth. We set ψ(y) = (1/2)yTQy = (1/2) ‖y‖2Q which has µψ = 1 with respect to Q-norm. The Bregman
divergence becomes Dψ(y||x) = (1/2) ‖y − x‖2Q. Therefore, we get the following update equations:

wk = (1− τk)yk + τkzk (30)

yk+1 = wk −
1

β
wk (31)

zk+1 = zk − ηkwk (32)

With β = 1, we have y1 = 0. So, we get the optimal solution with just one iteration of AGD. This shows that
the Q-norm space is a good choice of norm compared to `2 norm space for solving the quadratic minimization
problem.
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Figure 1: Variation of optimality gap with iteration in Case 1

6 Proposed algorithm

6.1 Generalized Conceptual Dual Implicit Accelerated Gradient Descent

We present the extension of the conceptual version of Dual Implicit Accelerated Gradient algorithm (C-DIAG) [9] for
the general norm in Algorithm 2

Algorithm 2 Generalized Conceptual Dual Implicit Accelerated Gradient Descent (GC-DIAG) for strongly-convex-
concave programming

Input: g, Dψ, µψ , L, σ, x0, y0, K,
Output: x̄K yK

1: Set β > L, z0 ← y0

2: for k = 0, 1, ...,K do
3: τk ← 2

k+2 , ηk ← k+1
2β µψ , wk ← (1− τk)yk + τkzk

4: Choose xk+1, yk+1, ensuring:

g(xk+1,yk+1) = min
x
g(x,yk+1), yk+1 ← arg min

y∈Y

{
−〈∇yg(xk+1,wk),y −wk〉+

β

2
‖y −wk‖2

}
5: zk+1 ← arg minz∈Y {−ηk 〈∇yg(xk+1,wk), z〉+Dψ(z‖zk)}, x̄k+1 ← 2

(k+1)(k+2)

∑k+1
i=1 ixi

6: end for
7: return x̄K ,yK

Convergence Analysis
The updates yk+1 in Step 4 and zk+1 in Step 5 correspond to the Accelerated Gradient Ascent update of g(xk+1, .).
Hence, we use our analysis for Algorithm 1. From Lemma 2, we conclude that ∀y ∈ Y ,

(k + 1) (k + 2) (g(xk+1,y)− g(xk+1,yk+1)) +
4β

µψ
Dψ(y‖zk+1)︸ ︷︷ ︸

Φk+1
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(1)

≤ (k) (k + 1) (g(xk+1,y)− g(xk+1,yk)) +
4β

µψ
Dψ(y‖zk)

(2)
= (k) (k + 1) (g(xk+1,y)− g(xk,y)) + (k) (k + 1) (g(xk,y)− g(xk+1,yk)) +

4β

µψ
Dψ(y‖zk)

(3)

≤ (k) (k + 1) (g(xk+1,y)− g(xk,y)) + (k) (k + 1) (g(xk,y)− g(xk,yk)) +
4β

µψ
Dψ(y‖zk)︸ ︷︷ ︸

Φk

(4)

≤ (k) (k + 1) g(xk+1,y)−
k∑
i=1

(2i)(g(xi,y)) +
4β

µψ
Dψ(y‖z0), (33)

where inequality (1) follows from Lemma 2. Equality (2) follows by adding and subtracting k(k + 1)g(xk,y).
Inequality (3) follows from the update rule g(xk,yk) = minx g(x,yk) in Step 4 of Algorithm 2 and hence g(xk,yk) ≤
g(xk+1,yk). Inequality (4) follows from the recurrence relation established in inequality (3). Now, we write

(k + 1) (k + 2) (g(xk+1,y)− g(xk+1,yk+1)) +
4β

µψ
Dψ(y‖zk+1) (34)

≤ (k) (k + 1) g(xk+1,y)−
k∑
i=1

(2i)(g(xi,y)) +
4β

µψ
Dψ(y‖z0). (35)

Rearranging the terms, we get

k+1∑
i=1

(2i)(g(xi,y))− (k + 1)(k + 2)g(xk+1,yk+1) ≤ 4β

µψ
Dψ(y‖z0)− 4β

µψ
Dψ(y‖zk+1) (36)

k+1∑
i=1

(2i)(g(xi,y))− (k + 1)(k + 2)g(x,yk+1)
(5)

≤ 4β

µψ
Dψ(y‖z0) (37)

g(x̄k+1,y))− g(x,yk+1)
(6)

≤ 4β

µψ(k + 1)(k + 2)
Dψ(y‖z0) (38)

max
y∈Y

g(x̄k+1,y))−min
x∈X

g(x,yk+1)
(7)

≤ 4β

µψ(k + 1)(k + 2)
Dψ(y‖z0) (39)

where inequality (5) follows by dropping the term 4β
µψ
Dψ(y‖zk+1) since Bregman divergence is positive and from

the fact that g(x,yk+1) ≥ g(xk+1,yk+1)∀x ∈ X . Inequality (6) follows by defining a convex combination of
x̄k+1 = 1

(k+1)(k+2)

∑k+1
i=1 (2i)xi and from the fact that g(.,y) is convex for every y. Since inequality (6) is satisfied

for arbitrary x ∈ X and y ∈ Y , we maximise y over Y and minimize x over X to get inequality (7). From inequality
(7) and Definition 3, we conclude that algorithm 2 gives a O(1/k2) convergence rate for the primal dual gap.

6.2 Generalized Dual Implicit Accelerated Gradient Descent

The proof of convergence rate of outer loop of G-DIAG follows along the lines of the potential-function based proof of
Nesterov’s AGD with general norm (Section 5.5). We would construct an appropriate potential-function and then show
that its value decreases monotonically over the iterations. By assuming that Imp− STEP is guaranteed to converge, we
can re-write each iteration of the G-DIAG algorithm as

τk =?, ηk =?

wk = (1− τk)yk + τkzk

yk+1 = arg min
y∈Y

{
−〈∇yhk+1(wk),y −wk〉+

β

2
‖y −wk‖2

}
zk+1 = arg min

z∈Y
{−ηk 〈∇yhk+1, z〉+Dψ(z‖zk)}

(41)
(42)

(43)

(44)

where hk+1(y) := g(xk+1,y) such that g(xk+1,yk+1) ≤ minx∈X g(x,yk+1) + ε
(k+1)
step . Clearly, G-DIAG executes

the k-th step iteration of the accelerated gradient descent with general norm (Algortihm 1) for the concave function
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Algorithm 3 Generalized Dual Implicit Accelerated Gradient Descent (G-DIAG) for strongly-convex-concave pro-
gramming

Input: g, Dψ , µψ , L, σ, x0, y0, K,
{
ε
(k)
step

}K
k=1

Output: x̄K yK
1: Set β ← L, z0 ← y0

2: for k = 0, 1, ...,K do
3: τk ← 2

k+2 , ηk ← k+1
2β ψ, wk ← (1− τk)yk + τkzk

4: xk+1, yk+1 ← Imp− STEP(g, L, σ,x0,wk, β, ε
(k+1)
step ), ensuring:

g(xk+1,yk+1) ≤ min
x
g(x,yk+1) + ε

(k+1)
step , yk+1 ← arg min

y∈Y

{
−〈∇yg(xk+1,wk),y −wk〉+

β

2
‖y −wk‖2

}
5: zk+1 ← arg minz∈Y {−ηk 〈∇yg(xk+1,wk), z〉+Dψ(z‖zk)}, x̄k+1 ← 2

(k+1)(k+2)

∑k+1
i=1 ixi

6: end for
7: return x̄K ,yK

8: Imp− STEP(g, L, σ,x0,w, β, ε
(k+1)
step ):

9: Set R←?, εagd ←?, y0 ← w
10: for r = 0, 1, ..., R do
11: Starting at x0 use generalized AGD (Algorithm 1 with −g(.,yr) to compute xr such that:

g(x̂r,yr) ≤ min
x
g(x,yr) + εagd, (40)

12: yk+1 ← arg miny∈Y

{
−〈∇yg(x̂r,w),y −w〉+ β

2 ‖y −w‖2
}

13: end for
14: return x̂R,yR+1

hk+1 = g(xk+1, .). As in Equation (16), we can define the potential function for iteration j using the concave function
hk and an arbitrary reference point ỹ ∈ Y as

Φhk(j) = j(j + 1) (hk(ỹ)− hk(yj)) +
4β

µψ
D(ỹ||zj) (45)

From Lemma 2, using β > L, the potential function Φhk+1(k) decreases at the step k of the algorithm. Hence,

Φhk+1(k + 1) ≤ Φhk+1(k)

= k(k + 1) (hk+1(ỹ)− hk+1(yk)) +
4β

µψ
D(ỹ||zk)

= k(k + 1) (hk(ỹ)− hk(yk)) +
4β

µψ
D(ỹ||zk)+

k(k + 1) (hk+1(ỹ)− hk(ỹ)) + k(k + 1) (hk(yk)− hk+1(yk))

= Φhk(k) + k(k + 1) (g(xk+1, ỹ)− g(xk, ỹ)) + k(k + 1) (g(xk,yk)− g(xk+1,yk))

(a)

≤ Φhk(k) + k(k + 1) (g(xk+1, ỹ)− g(xk, ỹ)) + k(k + 1)ε
(k)
step

where (a) follows provided Imp− STEP converges and g(xk,yk)− g(xk+1,yk) ≤ g(xk,yk)−minx∈X g(x,yk) ≤
ε
(k)
step. Carrying out summation for k = 0, . . . ,K − 1 and rearranging the terms gives

Φh0(0) +

K−1∑
k=1

ε
(k)
step ≥

K−1∑
k=1

2kg(xk, ỹ) + ΦhK (K)− (K − 1)Kg(xK , ỹ)

≥
K−1∑
k=1

g(xk, ỹ) +K(K + 1) (g(xK , ỹ)− g(xK ,yK)) +
4β

µψ
D(ỹ||zK)− (K − 1)Kg(xK , ỹ)
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(a)

≥
K∑
k=1

g(xk, ỹ)−K(K + 1)g(xK ,yK)

(b)

≥ K(K + 1) [g(x̄K , ỹ)− g(xK ,yK)]

(c)

≥ K(K + 1)
[
g(x̄k, ỹ)− g(x̃,yK)− ε(K)

step

]
(46)

where (a) holds because D(ỹ||zK) ≥ 0, (b) uses the fact that x̄K = 1
K+1

∑K
k=1 2ixi and (c) follows provided

Imp− STEP converges and g(xK ,yK) ≤ minx∈X g(x,yK) + ε
(K)
step ≤ g(x̃,yK) + ε

(K)
step. Rearranging the terms, we

get

g(x̄k, ỹ)− g(x̃,yK) ≤ Φh0(0)

K(K + 1)
+

K∑
k=1

k(k + 1)

K(K + 1)
ε
(k)
step

=
4βDψ(ỹ‖y0)

ψK(K + 1)
+

K∑
k=1

k(k + 1)

K(K + 1)
ε
(k)
step (47)

The final result follows by taking maximum over x̃ and minimum over ỹ repectively. If we set εstep = LΩ
ψk3(k+1) and

ignore the effect of ε(k)
step on the oracle complexity of Imp− STEP, we get

max
ỹ∈Y

g(x̄k, ỹ)−min
x̃∈X

g(x̃,yK) ≤ 4LΩ

ψK(K + 1)
+

LΩ

K(K + 1)

K∑
k=1

1

k2

(a)

≤ 6LΩ

ψK(K + 1)
(48)

where (a) follows because
∑K
k=1

1
k2 < 2 − 1

K . Note that this is not the overall oracle complexity of the G-DIAG
algorithm cause as it ignores the number of oracle calls in the Imp− STEP.

7 Problems faced with the proof

We faced the following problems during our attempt to construct the proof of G-DIAG

1. In the Imp− Step of the original DIAG algorithm [9], AGD (with `2 norm) is used to efficiently calculate (in
logarithmic number of steps) an estimate for xr = arg minx∈X g(x,yr) + εagd. The proof uses the guarantee
on AGD for strongly convex case in [2, Equation (5.68)]. But in our setting, strong convexity is defined with
respect to some arbitrary norm. We have not found any literature that tackles this problem using AGD. It
may happen that, for arbitrary norm, finding an εagd estimate xr would not be possible in linear time. As an
example, we found a blog [10] that discusses the case of mirror descent for the strongly convex case with
respect to a general norm. They note that the improved oracle complexity (due to strong convexity) is O(1/k)
only. So, it may not be possible to achieve the linear convergence in an arbitrary norm case.

2. In order to show that the Imp− Step converges, we need to show the updates satisfy some fixed point equation.
Let

x∗(y) = arg min
x∈X

g(x,y) (49)

y+ = arg min
y′∈Y

{
−〈∇yg(x∗(y),w),y′ −w〉+

β

2
‖y′ −w‖2

}
(50)

Then for proving that there exists a fixed point of the iterations of the Imp− Step, we attempt to show that the
operation y+ is a contraction, ∥∥y+

1 − y+
2

∥∥ ≤ α ‖y1 − y2‖ (51)
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for some α < 1. Note that
∥∥y+

1 − y+
2

∥∥ equals

α

∥∥∥∥arg min
y′∈Y

{
−〈∇yg(x∗(y1),w),y′ −w〉+

β

2
‖y′ −w‖2

}
− arg min

y′∈Y

{
−〈∇yg(x∗(y2),w),y′ −w〉+

β

2
‖y′ −w‖2

}∥∥∥∥
In [9], due to the `2 norm space, they proceed using Pythogoras theorem of the projection operator. But, that
is not possible in our case. One possible solution to this is to use Bregman projections instead and relative
smoothness and convexity definitions. But we could not prove AGD convergence using relative smoothness
and convexity as that would be required for the proof. We discuss this further in the appendix.

7.1 Attempted solution to problem 1

In case of mirror descent, the restarting strategy discussed in [10] improves the convergence rate from O(1/
√
k) to

O(1/k) through introduction of strong convexity (or concavity in our case). We try to come up with the convergence
rate for generalized AGD with strong concavity following a similar procedure.

Using Lemma 2, the oracle complexity for generalized AGD can be found by carrying out a telescoping sum. We state
the result in the following theorem
Theorem 1. Suppose h(.) is a L-smooth function and the parameters of Algorithm 1 are chosen as per Lemma 2, then
the following holds

h(y∗)− h(yT ) ≤ 4β

µψ
· Dψ(y∗||y0)

T (T + 1)
(52)

If we also assume Ω = maxy∈Y Dψ(y||y0), then the following bound would hold

h(y∗)− h(yT ) ≤ 4β

µψ
· Ω

T (T + 1)
(53)

Now, assume that h(.) is also σ-strongly concave with respect to some norm ‖.‖. Further, ψ(.) is chosen such that it is
µψ-strongly convex on the whole Rd, instead of only on Y . For any R > 0 and u, define ψR,u(y) := ψ(R−1(y − u)).
Let Dψ,R,z(.‖.) denote the corresponding Bregman divergence. The following corollary is crucial to get a bound for
generalized AGD with strong convexity.
Corollary 1.1. Suppose

Ω = max
{
Dψ(v||0)| ‖v‖ ≤ 1,v ∈ Rd

}
, R0 = ‖y∗ − y0‖

If we apply Algorithm 1 with ηk = (k+1)
2R0β

, τk = 2
k+2 , learning rate 1

R0β
for some β > L and Bregman divergence

Dψ,R,y0
(.||.) for T iterations. Then, the following bounds hold

h(y∗)− h(yT (R0,y0)) ≤ 4R0β

µψ
· Ω

T (T + 1)
(54)

‖y∗ − yT (R0,y0)‖2 ≤ 8R0β

µψµ
· Ω

T (T + 1)
(55)

where y∗ is the unique maximizer of h(.) on Y .

Proof. Consider the norm ‖.‖R0
:= R−1

0 ‖.‖. Note that h(.) is R0L-smooth and ψR,u(.) is µψ-strongly convex with
respect to ‖.‖R0

. In this case, Ω would become

Dψ,R0,y0
(y∗||y0) = Dψ(R−1

0 (y∗ − y0)||0) = max
{
Dψ(v||0)| ‖v‖ ≤ 1,v ∈ Rd

}
:= Ω

The bound in (54) follows directly from Theorem 1. The bound in Equation (55) is obtained from (54) using strong-
concavity of h(.) and the optimality of y∗.

h(y∗)− h(yT ) ≥ 〈∇h(y∗),y∗ − yT 〉+
µ

2
‖y∗ − yT ‖2 , 〈∇h(y∗),y∗ − yT 〉 ≥ 0

The error bounds given by Equations (54) (55) depend on R0 with smaller R0 giving smaller error bounds. Also, the
bound of the distance between y∗ and yT (55) is strictly decreasing with iterations T . These observations can be used
to design the following restarting strategy.
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1. Set y0 ∈ Y , l = 0

2. Set Tl such that ‖y∗ − yTl(Rl,yl)‖
2 ≤ 2−1R2

l .

3. Compute yl+1 = yTl(Rl,yl) using generalized AGD as per Corollary 1.1.

4. Set R2
l+1 = 2−1R2

l , l = l + 1. Go to step 2.

By Corollary 1.1, it suffices to choose Tl such that

8Rlβ

µψµ
· Ω

Tl(Tl + 1)
≤ 8Rlβ

µψµ
· Ω

T 2
l

≤ 2−1R2
l

=⇒ Tl =

⌈√
16βΩ

Rlµψµ

⌉
(56)

The total number of AGD iterations required to get yL is defined as ML =
∑L−1
l=0 Tl.

Proposition 1. Let L∗ be the largest L such that

L ≥

√
8βΩ

R0µψµ
2(L+1)/4

Then, the proposed restarting strategy guarantees the following bound

h(y∗)− h(yL) ≤ 2−(0.5ML+1)µR2
0, for L ≤ L∗ (57)

‖y∗ − yL‖2 ≤ 2−0.5MLR2
0, for L ≤ L∗ (58)

and

h(y∗)− h(yL) ≤ 1024β2Ω2

µ2
ψµM

4
L

, for L > L∗ (59)

‖y∗ − yL‖2 ≤
2048β2Ω2

µ2
ψµ

2M4
L

, for L > L∗ (60)

Proof. Using the proposed restarting strategy, it follows from Corollary 1.1 that

h(y∗)− h(yL) ≤ 2−(L+1)µR2
0 (61)

‖y∗ − yL‖2 ≤ 2−LR2
0 (62)

By the choice of Tl given in Equation (56), it holds that

ML ≤ L+

L−1∑
l=0

√
16βΩ

Rlµψµ
= L+

L−1∑
l=0

√
16βΩ

R0µψµ
2l/4 ≤ L+

√
8βΩ

R0µψµ
2(L+1)/4

Therefore, depending on value of L, the following holds

ML ≤ 2L, for L ≤ L∗ (63)

ML ≤

√
32βΩ

R0µψµ
2(L+1)/4, for L > L∗ (64)

The bounds given in Equations (57)-(60) follow by eliminating L from Equations (61), (62) using the relations in
Equations (63), (64).

We observe that the introduction of strong convexity improves the convergence rate of generalized AGD from O(1/k2)
to O(1/k4). Note that as expected, this is significantly better than the O(1/k) convergence rate obtained by applying
mirror descent.
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8 Conclusion

In this term project, we extended the framework of Conceptual Dual Implicit Accelerated Gradient Descent to arbitrary
norm case and proved O(1/k2) convergence rate using Bregman divergence framework. A key intermediate step
involved proving convergence guarantee for Nesterov’s AGD for a strongly convex and smooth function with respect
to an arbitrary norm. We improved the convergence to O( 1

k4 ) using the restarting strategy. We plan to use the notion
of relative smoothness and strong convexity to prove the contraction bound required for the inexact version of Dual
Implicit Accelerated Gradient Descent.

A Attempt to analyze Nesterov’s AGD using notion of relative smoothness

We first state the definition of relative smoothness as discussed in the course.

Definition 4. The function f(.) is L− smooth relative to the reference function ψ(.) if for any x and y, there is a scalar
L for which

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ LDψ(y‖x) (65)

Algorithm 4 Nesterov’s accelerated gradient ascent for Non-Euclidean space (Concept of relative smoothness)
Input: Smooth concave function h(.), learning rate 1

β , Bregman divergence Dψ(.‖.), initial point y0 and z0

Output: yK
1: for k = 0, 1, ...,K do

wk ← (1− τk)yk + τkzk (66)
yk+1 ← arg min

y∈Y
{− 〈∇h(wk),y −wk〉+ βDψ(y‖wk)} (67)

zk+1 ← arg min
z∈Y

{−ηk 〈∇h(wk), z〉+Dψ(z‖zk)} (68)

2: end for

We consider a function h(.) which is L-smooth relative to ψ(.). We modify the algorithm 1 by replacing the
β
2 ‖y −wk‖2 term with βDψ(y‖wk) shown in algorithm 4. For the same choice of β > L, ηk = (k+1)

2β µψ and
τk = 2

k+2 , we attempt to prove Φ(k + 1) ≤ Φ(k) where Φ(k) is defined in (16).

Using (16), the potential difference can be written as

Φ(k + 1)− Φ(k) = (k + 1)(k + 2) (h(wk)− h(yk+1))︸ ︷︷ ︸
(a)

−k(k + 1)(h(wk)− h(yk)) + 2(k + 1)(h(y)− h(wk))︸ ︷︷ ︸
(b)

+
4β

µψ
(Dψ(y‖zk+1)−Dψ(y‖zk))︸ ︷︷ ︸

(c)

(69)

The term (c) can be bounded as

Dψ(y‖zk+1)−Dψ(y‖zk) = (ψ(y)− ψ(zk+1)− 〈∇ψ(zk+1),y − zk+1〉)− (ψ(y)− ψ(zk)− 〈∇ψ(zk),y − zk〉)
= ψ(zk)− ψ(zk+1) + 〈∇ψ(zk), zk+1 − zk〉+ 〈∇ψ(zk+1)−∇ψ(zk), zk+1 − y〉
= −Dψ(zk+1‖zk) + 〈∇ψ(zk+1)−∇ψ(zk), zk+1 − y〉︸ ︷︷ ︸

(d)

≤ −Dψ(zk+1‖zk) + 〈ηk∇h(wk), zk+1 − y〉 (70)

where the last inequality is similar to that proved in Lemma 2. Note the difference between (18) and (70).

The term (a) can be bounded as

h(yk+1)− h(wk)
(1)

≥ 〈∇h(wk),yk+1 −wk〉 − LDψ(yk+1‖wk)
(2)

≥ 〈∇h(wk),yk+1 −wk〉 − βDψ(yk+1‖wk)
(71)
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Here, inequality (1) follows from the fact that (−h(x)) is L-smooth relative to ψ(.), inequality (2) follows from the
choice of β > L. Note the difference between (22) and (71).

From the update in (67) in Algorithm 4, yk+1 = arg maxy∈Y {〈∇h(wk),y −wk〉 − βDψ(y‖wk)}. We know that
yk ∈ Y and zk+1 ∈ Y . So, a convex combination v = (1− τk)yk + τkzk+1 ∈ Y . Hence, we can write

〈∇h(wk),yk+1 −wk〉 − βDψ(yk+1‖wk) ≥ 〈∇h(wk),v −wk〉 − βDψ(v‖wk)

(3)
= τk 〈∇h(wk), zk+1 − zk〉 − βDψ(v‖wk) (72)

where equality (3) follows from the update rule (66) in Algorithm 4.

The term (b) can be bounded similar to Lemma 2 as

− k(k + 1)(h(wk)− h(yk)) + 2(k + 1)(h(y)− h(wk))≤2(k + 1) 〈∇h(wk),y − zk〉 , (73)

We now substitute bounds (70), (72) and (73) in (69) to get

Φ(k + 1)− Φ(k) ≤ (k + 1)(k + 2) (−τk 〈∇h(wk), zk+1 − zk〉+ βDψ(v‖wk))

+ 2(k + 1) 〈∇h(wk),y − zk〉+
4β

µψ
(−Dψ(zk+1‖zk) + 〈ηk∇h(wk), zk+1 − y〉)

(???)

≤ (k + 1)(k + 2)βDψ(v‖wk)− 4β

µψ
Dψ(zk+1‖zk)︸ ︷︷ ︸

How to prove≤0

+ (−2(k + 1) +
4β

µψ
ηk) 〈∇h(wk), zk+1 − y〉︸ ︷︷ ︸

=0 by the choice of ηk=
(k+1)

2β µψ

(74)
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